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Abstract. Within the framework of the two-center shell model the classically dynamical behaviour of a
nucleon in heavy nuclei is investigated systematically with the change of nuclear shape parameters for the
first time. It is found that as long as the nucleonic energy is appreciably higher than the height of the
potential barrier there is a good quantum-classical correspondence of nucleonic regular (chaotic) motion.
Thus, Bohigas, Giannoni and Schmit conjecture is confirmed once again. We find that the difference between
the potential barrier for prolate nuclei and that for oblate ones is reponsible for the energy-dependence
difference between the nucleonic chaotic dynamics for prolate nuclei and that for oblate ones. In addition,
it is suggested that nuclear dissipation is shape-dependent, and strong nuclear dissipation can be expected
for medium or large separations in the presence of a considerable neck deformation built on a pronounced
octupole-like deformation, which provides us a dynamical understanding of nuclear shape dependence of
nuclear dissipation.

PACS. 05.45.+b Theory and models of chaotic systems – 21.60.Cs Shell model – 03.20.+i Classical
mechanics of discreta systems: general mathematical aspects – 11.10.Lm Nonlinear or nonlocal theories
and models

1 Introduction

The classical nonlinear dynamics of Hamiltonian systems
has been widely and deeply investigated, and the field of
interest is being extended to quantum systems as well [1].
But since the Schrödinger equation governing the quan-
tum mechanical motion is linear and time reversible, one
can hardly connect it with nonintegrability [2]. In addi-
tion, the conventional method of pursuing a motion of a
representative point in phase space by analyzing the tra-
jectory is not possible for quantum system. Furthermore,
for highly unstable quantum systems perturbation theory
is no longer adequate. All of these reasons make it difficult
to have a clear definition for quantum chaos. Nevertheless,
Bohigas [3] found that during the transition of a classical
analog of a quantum system from regular to chaotic mo-
tion, the quantum behaviour does not manifest itself in
a specific energy level or quantum state, but in statisti-
cal fluctuation properties of the global energy levels of
the system. The systems whose classical analogs are in-
tegrable show Piosson fluctuations, whereas the systems
whose classical analogs are fully chaotic show fluctuation
patterns of a Gaussian orthogonal ensemble (GOE). Since
both the Poisson and GOE distribution functions contain
no free parameters, in 1984, Bohigas, Giannoni and Schmit
a Permanent address

(BGS) conjectured that this phenomenon was generic [4].
From then on Seligman et al. [5] studied a two-dimensional
Hamiltonian which classically shows a transition from reg-
ular to chaotic behaviour. Delande and Gay [6] studied
numerically the hydrogen atom in a magnetic field, an-
other system which shows a transition from regularity to
chaos.

Wintgen and Marxer [7] examined the anisotropic Ke-
pler problem, while Meredith et al. [8] and Xu et al. [9]
considered the three-orbital Lipkin-Meshkov-Glick model.
In each these cases, the analog of a classically regular sys-
tem showed Poisson fluctuation and the analog of a classi-
cally chaotic system displayed GOE behaviour. Now it has
been generally accepted that quantum systems are regular
(chaotic) if their spectral fluctuations can be described by
a Poisson (GOE) statistics.

The nearest neighbour spacing distribution P(s) and
spectral rigidity ∆3(L) are two commonly used statisti-
cal measures [1]. The former is equal to the probability
density for two neighbouring levels having the spacing s
and measures the degree of level repulsion. The latter is
the least square deviation of the number of spacings in a
given energy interval L from the best fit to a straight line,
which signifies the long-range correlations of a quantum
spectrum. For the GOE statistics, the spacing distribu-
tion
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P (s) =
π
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4
), (1)

and the ∆3(L) can only be evaluated numerically, but it
approaches the value

∆3(L) ∼= 1
π2

(lnL− 0.0687), (2)

for large L.
For the Poissonian statistics,

P (s) = exp(−s), (3)

∆3(L) =
L

15
. (4)

One of the best systems for the study of quantum chaos
is the atomic nucleus. Roughly speaking, the studies of
quantum chaos related to nuclei have two aspects. One is
to discuss the chaos in realistic nuclei [1,10]. The other is
to investigate the single-particle (nucleonic) motion in a
deformed nucleus using mean field approach [11,13]. The
symmetry (or absence of symmetry) of the mean field re-
lated to the geometric shape of nuclei determines the reg-
ularity (or chaoticity) of the single-particle motion. Usu-
ally, quadrupole deformation is considered to be the ma-
jor deviation from spherical symmetry. However, more re-
cently a possible octupole contribution has been taken
into account for a number of reasons [14,15]. Inclusion
of an octupole deformation in addition to a quadrupole
deformation (neglecting the spin-orbit coupling and l2-
correction terms) was discussed by Heiss et al. [11]. They
found that when an octupole deformation is switched on,
the nucleonic motion is regular for prolate nuclei, how-
ever, chaotic for oblate ones. It was also shown that there
is a good quantum-classical correspondence of nucleonic
regular (chaotic) motion. The multipole deformation po-
tential mentioned above corresponds to one-center shell
model which does not contain the proper asympototic
shapes, and is not suitable to describe the heavy nuclei
with necked-in or very elongated shapes. Due to the in-
clusion of a neck deformation, the two-center shell model
(TCSM) [16] can describe not only the small deformation
but also the large deformation (including necked-in or very
elongated ones).

In [17], in the framework of the TCSM we calculated
the P(s) and∆3(L) of single-particle energy levels of heavy
nuclei when the shape parameters of a nucleus are changed
systematically. The shape parameter region in which both
the P(s) and ∆3(L) are approximately close to those of
GOE has been found. We call the shape parameter re-
gion as the chaotic region of shape parameter, in which
for a nucleon in heavy nuclei the quantum chaotic motion
is realized. Although the relationship between the quan-
tum chaotic (regular) motion and shape deformations has
been clarified in [17], the classical dynamics of a nucleon in
heavy nuclei has not been studied. The present paper is to
provide, for the first time, a detailed analysis of the clas-
sically dynamical behaviour of a nucleon in heavy nuclei
by means of the TCSM. Since the neck deformation being
a specific feature of the TCSM plays an important role

in heavy ion collision, fusion-fission and nuclear molecu-
lar states, its influence on the classical dynamics will be
particularly paid attention. Our aim is to seek the connec-
tion between the classical dynamics and quantum spectral
statistics of a nucleon in heavy nuclei to see whether the
BGS conjecture is still valid for such a complex system.
In addition, the possible relationship between the shape
deformations and nuclear dissipation will be discussed.

2 The two-center shell model and the chaotic
region of shape parameter

Neglecting the spin-orbit coupling and l2-correction terms,
the single-particle Hamiltonian of the TCSM in cylinder
coordinetes z, ρ, φ is as follows

H = − h̄
2 ∇2

2m0
+ V (ρ, z). (5)

The potential reads

V (ρ, z) =
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(6)
by denoting the positions of the centers of the two frag-
ments by z1 and z2, z1 ≤ 0 ≤ z2, with the abbreviation

z′ =
{
z − z1, z < 0
z − z2. z > 0

All shape deformation parameters of a nucleus can be
reduced to the following five independent ones. (a) The
separation of the two centers ∆z=z2 − z1. (b) The neck
deformation of a nucleus ε = E0

E′
, where E

′
= 1

2m0ω
2
ziz

2
i

(i=1,2), E0 is the actual height of the barrier [16]. ε=0
corresponds to ovaloids, ε=1 to well necked-in shapes. (c)
The mass asymmetry Xi = (A1−A2)

(A1+A2) which ranges from
0 to 1. A1 and A2 are the mass numbers of the frag-
ments, which have no explicit expression and are evalu-
ated numerically [16]. (d) The ellipsoidal deformations of
the fragments (local deformations) βi=

ωρi
ωzi

(i=1,2). If Xi

=0, β1=1=β2 and ε=0, the shape deformation is a pure
quadrupole one. Provided Xi 6=0, an octupole-like defor-
mation appears. If Xi is larger, and local deformations
β1 and β2 are quite asymmetry (i. e. one of the fragments
appears pronounced oblate, the other the pronounced pro-
late.), then a larger octupole-like deformation is expected.

The parameters in (6) can be written in the form

f0 = 4ε, ci =
1
zi
, di =

1
4z2
i

(i = 1, 2),
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g1 =
1−Q2

z1∆ z
, g2 =

1−Q2

Q2z2∆ z
,

z1 = −Q3∆ z

1 +Q3
, z2 =

∆ z

1 +Q3
.

with Q = ωρ2
ωρ1

, Q3 = β2
β1Q

. The frequencies ωzi and ωρi
(i=1,2) can be determined by the five shape parameters
together with the requirements of the volume conservation
and smooth joining of the potential. Thus when the five
shape parameters are given all of the parameters in (6)
can be determined uniquely.

In [17], it is shown that at Xi = 0, β1 = 1.0 = β2

(equivalent to no octupole-like deformation) the P(s) and
∆3(L) always appear to be the Poisson-types for all pos-
sible values of ε and ∆z. While Xi 6= 0 and β1, β2 devi-
ate from 1.0 (i. e. an octupole-like deformation is added),
the P(s) and ∆3(L) depart from the Poisson-types. It was
found that for heavy nuclei the single-particle spacing dis-
tribution and spectral rigidity are approximately close to
those of GOE when the shape parameters fall into the
following region [17]:

2.0 < ∆ z < 5.0 fm, 0.4 < Xi < 0.7,

0.2 < β1 < 0.5, 2.0 < β2 < 4.0,

εmin < ε < 0.9,

(εmin = 0 for 2.0 < ∆ z < 3.0,

εmin = 0 ∼ 0.3 for 3.0 < ∆ z < 5.0 fm). (I)

5.0 < ∆ z < 11.0 fm, 0.3 < Xi < 0.8,

0.3 < β1 < 0.6, 2.0 < β2 < 5.0,

0.3 < ε < 0.8. (II)

Both of the parts (I) and (II) of the chaotic region exhibit
that the appearance of the quantum chaotic motion re-
quires a pronounced octupole-like deformation. The shape
parameters in (I) and (II) correspond to the oblate and
prolate shapes of a nucleus, respectively. Therefore the
quantum chaotic motion occurs not only in the heavy nu-
clei with oblate shapes but also in prolate ones with a
considerable neck deformation. The neck deformation ap-
preciably influences the occurence of the quantum chaotic
motion when the separation is medium or large (5.0 <
∆z< 11.0 fm), however it is weakly dependent on ε when
∆z is small (2.0 < ∆z< 5.0 fm).

3 Classically dynamical behaviour of a
nucleon in heavy nuclei

For a nucleon, its corresponding classical dynamics is gov-
erned by a set of canonical equations of Hamiltonian

H =
p2

2m0
+ V (ρ, z).

As is well known, Poincaré section is a convenient and
reliable criterion to judge the regularity (or chaoticity)

Fig. 1. The Poincare surface of section z−Pz for a nucleon in
238
92 U . ∆z=3.0 fm, β1 = 1.0 = β2, Xi=0, the nucleonic energy
e=40.0 MeV. a ε = 0, b ε=0.50

of a classical system. In the present work the surface of
section is chosen to be the plane z-Pz at ρ=0, in which the
z-component of angular momentum is a constant (equal to
zero). It has been noticed that for other surfaces of section,
their qualitative behaviour is similar to that of the section
z-Pz. The numerical calculations in the present work are
carried out for a nucleon in 238

92 U . For other heavy nuclei,
the dynamical behaviour is qualitatively the same as that
for 238

92 U .
The surface of the section are studied systematically

with the change of the shape parameters. When the shape
deformation is purely quadrupole only ellipsoidally reg-
ular invariant tori appear in the surface for any possi-
ble values of the separation as shown in Fig. 1a where
∆z=3.0 fm, ε=0, Xi=0 and β1 = 1 = β2. Once a neck
deformation is added to a purely quadrupole deformation
(the deformation becomes quadrupole-like one), it is found
that deformed ellipsoidally invariant tori are dominant
and some islands emerge in the surface. We illustrate this
situation in Fig. 1b where ∆z=3.0 fm, ε=0.50, Xi=0 and
β1 = 1 = β2, from which one can see that there are three
moon-shape islands besides the numerous ellipsoidally de-
formed invariant tori. Thus it can be concluded that the
nucleonic classical motion is regular if the deformation is
quadrupole or quadrupole-like.

We find that an octupole-like deformatiom strongly in-
fluences the classical dynamics. If a small octupole-like is
added to a quadrupole or quadrupole-like deformation, a
chaotic sea emerges in a small part of the surface, and de-



118 Jian-zhong Gu et al.: Classically dynamical behaviour of a nucleon in heavy nuclei

Fig. 2. The Poincare surface of section z − Pz for a nucleon in 238
92 U for different octupole-like deformations. e=40.0 MeV. a

∆z=3.0 fm, β1 = 0.80, β2 = 1.20, Xi=0.15, ε = 0.50; b ∆z=3.0 fm, β1 = 0.70, β2 = 1.50, Xi=0.25, ε = 0.5; c ∆z=3.0 fm,
β1 = 0.40, β2 = 2.50, Xi=0.40, ε = 0.5; d ∆z=9.0 fm, β1 = 0.4, β2 = 2.50, Xi=0.4, ε = 0.5

formed invariant tori and islands appear in the rest of the
surface. This situation is illustrated in Fig. 2a in which
we take Xi=0.15, β1 = 0.80, β2 = 1.20 (indicating a small
octupole-like deformation) and ∆z=3.0 fm, ε=0.30. With
the increase of octupole-like deformation, more and more
invariant tori are damaged and a chaotic sea can be ex-
pected to become larger and larger in the surface. In Fig.
2b, Xi=0.25, β1 = 0.70, β2 = 1.50 (which is obviously a
large octupole-like deformation compared to that in Fig.
2a), and the separation and neck deformation are the same
as those in Fig. 2a. It can be seen that the chaotic sea in
Fig. 2b is apparently larger than that of Fig. 2a. The dy-
namics in Figs. 2a–b is in between regularity and chaotic-
ity. If an octupole-like deformation becomes so large that
the values of the five shape parameters are located in the
chaotic region of shape parameter, then most of tori dis-
appear and a chaotic sea takes over the surface. Thus, the
classical motion is chaotic. This is exemplified both by Fig.
2c for the part (I) and by Fig. 2d for the part (II) of the
chaotic region. Therefore the occurrence of the classically
chaotic dynamics requires a pronounced octupole-like de-
formation.

It is noticed that for small separations the chaotic dy-
namics can be produced even if the neck deformation is
very small. In Fig. 3a the values of shape parameter are
taken the same as those in Fig. 2c except for the neck
deformation, ε=0.02. One can see that in Fig. 3a the dy-
namics is also chaotic. However, when the separation be-

comes medium or large the occurrence of chaotic dynamics
requires a considerable neck deformation. In Fig. 3b the
same values of shape parameter as those in Fig. 2d are
taken except for the neck deformation ε=0.15. It is shown
that the dynamics is in between regularity and chaoticity
and obviously different from that in Fig. 2d. We find that
a very large neck deformation can suppress the chaotic dy-
namics especially for medium or large separations. In Fig.
3c we take the same values of shape parameter as those
in Fig. 2d except for the neck deformation ε=0.95. One
can observe that invariant tori are dominant, the motion
is approximately regular.

It is shown that for prolate nuclei (corresponding to
medium or large separations the chaotic dynamics only oc-
curs if the nucleonic energy is higher than a certain value.
In Figs. 4a-b, the values of shape parameter are the same
as those in Fig. 2d, but the energy e is taken as 20.0 MeV
and 9.0 MeV respectively. From Figs. 4a–b together with
Fig. 2d, one can find that with the decrease of energy, the
dynamical pattern is changed from chaoticity to regular-
ity via a mixture of regularity and chaoticity. Nevertheless,
for oblate nuclei (corresponding to small separations), the
situation is quite different. In Figs. 4c–d, the shape pa-
rameters are the same values as those in Fig. 2c but the
energy e is 3.0 MeV and 2.0 MeV respectively. Fig. 4c
shows that when e is as low as 3.0 MeV the dynamics is
nearly chaotic. Even if e is reduced to 2.0 MeV the dy-
namics still shows a mixture of regularity and chaoticity.
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Fig. 3. The Poincare surface of section z − Pz for a nucleon
in 238

92 U for different neck deformations. β1 = 0.40, β2 = 2.50,
Xi=0.40, e=40.0 MeV. a ∆z=3.0 fm, ε = 0.02; b ∆z=9.0 fm,
ε = 0.15; c ∆z=9.0 fm, ε = 0.95

The above phenomenon can be understood by means of
the TCSM potential described by (6). The potential as a
function of coordinates is drawn in Fig. 5a for a prolate
nucleus and in Fig. 5b for an oblate one. In Fig. 5a and Fig.
5b, the shape parameters have the same values as those in
Fig. 2d and in Fig. 2c separately. It is shown that there is
a pronounced potential barrier at the position z=0 for the
prolate case, however, there is a very low potential barrier
at z=0 for the oblate case. Certainly, as displayed in Fig.
5c the height of the barrier is determined by the neck de-
formation ε. The larger the ε is, the higher the barrier. In
Fig. 5c it can be seen that for the oblate case, the height
of barrier is still very low even if ε=0.90. On the contrary,
for prolate case the height is as high as 25 MeV at ε=0.90.
As a usual, the potential barrier promotes the nucleonic
chaotic motion due to its scattering to the nucleon. This
is the reason why the chaotic motion occurs for prolate

Fig. 4. The Poincare surface of section z − Pz for a nucleon
in 238

92 U for different nucleonic energies. β1 = 0.40, β2 = 2.50,
Xi=0.40, ε = 0.50. a ∆z=9.0 fm, e=20.0 MeV; b ∆z=9.0 fm,
e=9.0 MeV; c ∆z=3.0 fm, e=3.0 MeV; d ∆z=3.0 fm, e=2.0
MeV



120 Jian-zhong Gu et al.: Classically dynamical behaviour of a nucleon in heavy nuclei

Fig. 5. The potential versus coordinates for prolate and oblate
nuclei in the presence of a pronounced octupole-like deforma-
tion. β1 = 0.40, β2 = 2.50, Xi=0.40. a ∆z=9.0 fm, ε = 0.50; b
∆z=3.0 fm, ε = 0.50; c left for ∆z=3.0 fm, right for ∆z=9.0
fm

nuclei with a considerable neck deformation, and why no
chaotic motion is expected for prolate nuclei in the case
of Heiss et al. (neck deformation was not included). How-
ever, if the nucleonic energy approaches to (but above)
the height of the barrier, the nucleonic kinetic energy be-
comes quite small once the nucleon is nearby the top of
the barrier, which makes the nucleonic trajectories stable.
Then, the chaotic motion is suppressed. If the energy is be-
low the height, the nucleon moves within a parabolic-like
potential, a regular or mixed dynamics can be expected.
Therefore, due to a pronounced barrier in the prolate case,
the chaotic dynamics is only produced if the nucleonic en-
ergy has a considerable value (apparently higher than the
height of the potential barrier). Nevertheless, due to a low
barrier in the oblate case, the chaotic dynamics appears
even if the energy is very low.

Comparing the nucleonic quantum motion with its cor-
responding classical dynamics, one can find that for a nu-
cleon in heavy nuclei, there is a good quantum-classical
correspondence of regular (chaotic) motion as long as the
energy of a nucleon is obviously higher than the height
of the barrier, so that BGS conjecture [4] is corroborated
once again here.

Recently, Wilkinson [18] pointed out that the adiabatic
time-dependent chaotic Hamiltonians can be a source
of dissipation, and the dissipation is drastically reduced
when the Hamiltonian is integrable. Similar conclusion
was drawn by Carvalho et al and by Blocki et al. [19]. In
a nucleus, there exist collective and intrinsic (nucleonic)
motions. The former which leads to the change of nuclear
shape can be regarded as slow variables, the latter rapid
variables. This is so-called adiabatic approximation. In the
past several decades the induced heavy nuclei fission have
been widely investigated [20–22]. During the fission pro-
cess, strong nuclear dissipation has been found for a long
time. The present study has shown that the chaotic mo-
tion of a nucleon in heavy nuclei is strongly dependent
on the nuclear shape deformations. From the pointview of
Wilkinson, the nuclear disspation of heavy nuclei should
be the shape dependent, and strong nuclear dissipation is
expected for the nuclei with the shape parameter values
described by the part (II) of the chaotic region (An oblate
nuclear shape is impossible during the fission process).
The present work provides us a dynamical understanding
of the shape dependence of nuclear dissipation.

4 Conclusions

In the present paper we have studied the classical dynam-
ics of a nucleon in heavy nuclei within the framework of
the TCSM when shape parameters are varied systemati-
cally. It has been found that a pronounced octupole-like
deformation is necessary to produce the classically chaotic
dynamics. The effect of neck deformation on the classical
dynamics for a small separation is quite different from that
for a medium or large separation. In the case of medium
or large separations, a considerable neck deformation and
a higher energy value over the height of the barrier are
required for the occurrence of the classical chaos. It has
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been found that when the energy is apparently higher than
the height of the barrier there is a good quantum-classical
correspondence of nucleonic regular (chaotic) motion by
comparing the classically dynamical behaviour with the
statistical properties of the quantum spectrum. So that
the BGS conjecture has been confirmed once again for
such a complex system. It has been shown that even if a
nucleus appears to be prolate one, the classical chaos can
also occur provided that there exist a considerable neck
and a pronounced octupole-like deformation. This is quite
different from the conclusion of Heiss [11] et al. It is sug-
gested that the difference between the potential barrier for
prolate nuclei and that for oblate ones is reponsible for
the energy-dependence difference between the nucleonic
chaotic dynamics for prolate nuclei and that for oblate
ones. In addition, it is implied that the nuclear dissipation
should be shape-dependent, and strong nuclear dissipation
is expected for the nuclei with the shape parameter values
described by the part (II) of the chaotic region. It pro-
vides us a dynamical understanding of shape dependence
of nuclear dissipation. The present work is heuristic to the
study of a finite system where pure geometry dominates
the dynamical behavior of the system.
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the National Natural Science Foundation of China and China
Postdoctoral Science Foundation.
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14. S. Åberg, H. Flocard and W. Nazarewicz, Annu. Rev. Nucl.

Part. Sci. 40 (1990) 439
15. I. Hamamoto, B. Mottelson, H. Xie and X. Z. Zhang, Z.

Phys. D21 (1991) 163
16. J. A. Maruhn and W. Greiner, Z. Phys. 251 (1972) 431
17. Jian-zhong Gu, Xi-zhen Wu, Yi-zhong Zhuo and En-guang

Zhao, Nucl. Phys. A625 (1997) 621
18. M. Wilkinson, J. Phys. A23 (1990) 3603
19. T. O. Carvalho and M. A. M. Aguiar, Phys. Rev. Lett.

76 (1996) 2690; J. Blocki, Y. J. Shi and W. J. Swiatecki,
Nucl. Phys. A554 (1993) 387

20. H. A. Kramers, Physica 7 (1940) 284
21. H. A. Weidenmüller and Jiang-shang Zhang, Phys. Rev.

C29 (1984) 879
22. Jian-zhong Gu and Yin-sheng Ling, Z. Phys. A349 (1994)

53


